A Reply to the “Placebo” or “Fake” God Helmet Experiment.

The Actual God Helmet

Todd Murphy, 2019.

A Dutch experiment using a fake God Helmet was published last year (D. Maij, et al.).  It claimed to have elicited a large number of extraordinary experiences using suggestion and a placebo helmet.  On closer examination, it turns out that the percentages of “sensed presences” and out of body experiences they reported from their “fake” God Helmet were very close to what Dr. Michael Persinger reported from his placebo control subjects.

Dr. Persinger found that about 10% of his control subjects reported feeling a presence, in contrast to the 80% who felt it under actual stimulation conditions.  The “fake” God Helmet experiment found that 5.6% of their subjects (placebo subjects, all) felt a presence.  Persinger saw more “sensed presences” in his placebo control group because he used an acoustically silent chamber, which has a noticeable, but small, effect on it’s own.  He published this in one of his many essays.

The Dutch researchers didn’t apply any actual stimulation, so they didn’t see the high rates (80%) of sensed presence sensations that Persinger saw in his experiments, which also used placebo controls and blind protocols (sample).

The Dutch researchers found that 8.6% of their subjects reported “floating” sensations or out of body experiences (different, but similar experiences) without any stimulation.  In contrast, Persinger’s subjects in one study found 28 to 37% (depending on their neural profiles and other factors) reporting them.  If the results were due to placebo effect or suggestion,  the numbers should have been approximately the same.

The Dutch study was carried out during a music festival, a high-energy, loud, and celebratory environment.  The subjects went from that environment into partial sensory deprivation, and the strong contrast between the mood in the crowd, and the mood that appears with sensory deprivation could have contributed to the results from the “fake” helmet.

The God Helmet isn’t a placebo device, and it doesn’t work through suggestion or suggestibility.  It’s a real neural stimulation technology.  The best way to see the effects a brain technology has is to use EEG or another brain imaging method to observe it’s effects directly, which was not done in the Dutch experiment.

Maij’s results  with his ‘fake‘ or ‘pretend‘ helmet were similar to Persinger’s control groups, but not even close to Persinger’s results with  his actual subjects.

In addition, Maij used “white noise” a known mild hallucinatory stimulus, so although his helmet was a “dummy”, his procedure wasn’t a full placebo.

HERE’S a more complete reply, and Here’s a video response on YouTube.


New Book – Deja Vu & Other Spiritual Gifts

My new book is out.  You can see it on Amazon.

Deja Vu & Other Spiritual Gifts

Todd Murphy
Laurentian University Neuroscience Research Group

Deja Vu & Other Spiritual Gifts will help you find the spiritual practices that work for you.  It also explains how to begin working towards spiritual skills, like healing by laying on hands, psychic perception, communicating with animals, and out of body experiences.  It will tell you what the 3rd eye is, and how to ‘open’ it.  All these things are a lot less profound and a lot easier to learn than they seem.  When the veil of superstition is lifted from these cognitive skills, they become much simpler and more attainable. They may seem more profound when they’re embedded in metaphysical teachings, but the metaphysics actually makes them harder to practice.

The spiritual path in this book is based on neuroscience, not any religious traditions.  It uses the shamanic and tribal religions of our first homo sapiens ancestors as a point of reference a few times, because that’s first spiritual path our species adapted to.

If you sense presences when you’re alone, you probably have an aptitude for prayer.

If you often have music running through your head, you will probably have a knack for chanting practices, like the rosary or Hindu Japa.

If you feel your body moving when you’re actually keeping still, you may be able to learn to have out-of-body experiences.

Very few people have all these sensations, but most people have at least one of them. In Déjà vu & other Spiritual Gifts, you’ll find ways of working with them that can make your spiritual life more fulfilling.

Deja Vu & Other Spiritual Gifts will tell you how to begin learning healing by laying on hands, the only kind of healing available for the first generations of humans.  It also offers some wisdom from a spiritual healer, who passed it on to the author.

This is an example of applied neurotheology.  It puts scientific discoveries about the brain’s role in religious and mystic experiences into practice.

Deja Vu & Other Spiritual Gifts is a map of the human spiritual landscape, presented with its feet grounded in science, and its head in the stars.

25 Articles On Neurotheology

There are about 25 articles on neurotheology on a recently-reorganized page on my website.  Most authors on this subject take monotheism (God and belief in God) as the main subject for neurotheology.  I think that the mystic traditions of Hinduism and Buddhism are just as important, and there are several articles that cover some of it’s concepts, including enlightenment and reincarnation.

Here’s the link:

My perspective is based on neuroscience, but the theory of evolution is just as important for me.  It’s not enough to see that the brain participates in spiritual experiences.  Any explanations that fail to see the adaptive value of spirituality in our evolutionary history fall short of explaining why humans are so often deeply involved with religion, and why some of us aren’t.  People who aren’t interested in spirituality are also important part of the story.  The brain can take us through mystic experiences, but neurotheology needs to explain why we (or some of us) have them, and that brings us back to the origins of our species.

The religions we see today aren’t the ones neurotheology really needs to explain.  The religions of our earliest ancestors may be the best place to look to understand how and why humans are so drawn to religion and spiritual practices, like prayer, chanting, meditation and above all, shamanism.

My article on that subject is here:

The published version (published in a scientific journal, and more difficult reading) is here:

Among other things, it says that two brain parts are the source for spiritual experiences.  These are the hippocampus on the right, and the amygdala on the left.  The hippocampus supports trances, meditation, introspection, equanimity and detachment.  The left amygdala underpins devotion, intimations of God, angels and spirits, as well as religious joy, rapture, and bliss.  We could say that the first is the way of meditation, and the second is the way of prayer.

Differences in personality and ways of thinking (“cognitive style”) that appear when people have their spirituality ‘focused’ in these two very different brain structures create diversity among people. It also means that no single “spiritual path” could (or ever can) work for everyone.

This gave our earliest ancestors many different ways of thinking.   People with many different perspectives participated in our ancient tribal councils.  In a tribal council, the aggressive and the peaceful both have voices worth hearing.  This gave the tribe more options when they were confronted with threats and opportunities.

There were (and still are) big differences in the religious lives of people.  On top of this, there are big differences in how ‘spiritual’ we are.  Some of us are so involved with religion that anything they say is an expression of their religious beliefs.  Others don’t care at all.  Our populations include both atheists and the devout, as part of the same (evolutionary) strategy for keeping ourselves alive.  Atheists are often ‘linear thinkers’, and religious people are more ‘holistic’.  Each type is prone to different mistakes, and when our species was young, they could compensate for each other.

The variety in the kinds of spirituality, and the differences in how interested we are in it, may be the sources for the diversity among humans.  And diversity is part of our ‘survival strategy’.  Ten people, ancient or modern, will find ten different things to say about a single situation, and this gave our ancient tribes lots of options for responding to it.  The tribe would make it’s choice over time, after people had had a chance to talk it over, especially in tribal councils.  The saying “many hands make light work” applied to thinking as well as working.

Spirituality may be supported by our brains, but only because our evolution demanded it.

The variety in how much and what kind of religion may be one of the things that makes us human.

Homo Sapiens:  The animal that both prays, and rejects prayer.

Out of Body Experience in less than six minutes with advanced magnetic stimulation

“Dr. Michael Persinger, known as the developer of the God Helmet, an experimental apparatus that let a few people see God in his laboratory, has published a laboratory report in which a subject had an out-of-body experience immediately after magnetic brain stimulation that lasted only five minutes.”  Link (opens in a new window)

This is a fascinating read for anyone interested in OBEs.

Reply to “Neuroscience for the Soul”.

Shiva_God_HelmetPersinger has published a reply to a critical article in a British “pop” psychology magazine (The Psychologist) entitled “Neuroscience for the Soul”.  This article perpetuates a few mistaken notions about the God Helmet, as well as some of Persinger’s theories.

For example, Persinger does not believe that spiritual and religious experiences are seizural events in the temporal lobes, and he also rejects the idea that religious belief is an epileptic phenomena.

Persinger’s God Helmet results are not due to suggestion, and they do use placebo controls and double-blind conditions.

Richard Dawkins, the flagship author and semi-official spokesman for the skeptical movement, had been drinking before his God Helmet Session, and that’s why he felt so few effects.

The low-intensity magnetic fields used with the God Helmet are strong enough to create striking effects, and this link will take you to a page where you can see that lots of other researchers have seen measurable effects using low-powered magnetic fields on the brain.

Skeptics insist that Persinger’s work with paranormal phenomena (correlating it with geomagnetic measures) has not been replicated.  However, it simply isn’t true.

In spite of claims to the contrary, there has been a replication of a God Helmet experiment, (easy reading description) as well as replication of other work by M.A. Persinger.

The “Haunted Room” experiment (intended to try to create a synthetic haunted environment) was not a test of any of Persinger’s concepts, in spite of claims to the contrary.  The “haunted room” experiment used whole-body stimulation (to try to create an artificial “haunted Room”), while Persinger’s experiments stimulated only the head, and sometimes just one side of it.  You can’t stimulate only the right side of the head using an entire room as the stimulator.

Most of the criticisms of Persinger’s theories and ideas resolve into “straw man” arguments.  These are arguments that give the impression of criticizing a person’s argument, while actually challenging a position that they never advanced.  It creates the illusion of having falsified an opponent’s proposition by covertly replacing it with a different proposition (i.e. “stand up a straw man”) and then to dispute the false argument (“knock down a straw man”) instead of the original proposition.  Other straw man arguments are based on substituting a critic’s interpretation of a belief for the belief itself.

There are many other points discussed in Persinger’s published reply, making it worth reading for anyone interested in neurotheology and the many debates that have appeared over the years.  You can read it here.

Ten Blogs by Dr. Michael A. Persinger

Blogs by Dr. Michael A. Persinger.

The God Helmet’s Weak Fields are Sufficient to Influence Brain Activity.

We do not allow suggestion or Suggestibility to Influence our Lab Results.

Our results can’t be attributed to suggestion.

God Helmet (and many other of our) results have been replicated.

God Helmet Experiments use Blind Protocols and Placebo Controls.

Replications of our work on Geomagnetism and Paranormal Phenomena.

The Tectonic Strain Theory and French’s “Haunted Room” Experiment.

Richard Dawkins – Alcohol and the God Helmet don’t mix.

My theories are not based on religiousness in epileptics.

Religious belief is not an epileptic phenomenon.

Shortlink to this page:


The God Helmet’s Weak Fields are Sufficient to Influence Brain Activity – A Blog By Dr. M. A. Persinger

The mistaken claims that our magnetic fields can’t affect the brain ignore the evidence – a Blog by Dr. Michael Persinger.

Question: Is there any truth to the claim that your magnetic fields cannot influence the brain?

A schematic diagram of the testing apparatus for the experiment. Two wooden pine boards or duct metal were periodically inserted between the SAM-360 device and the power meter. In one condition physiological saline was placed adjacent to the power meter.
A schematic diagram of the testing apparatus for the experiment. Two wooden pine boards or duct metal were periodically inserted between the SAM-360 (vis. God Helmet) device and the power meter. In one condition physiological saline was placed adjacent to the power meter.

Answer: No.  Recently, a colleague and I performed an experiment using three materials, each three times as dense and thick as the human skull (wood, saline solution or duct metal) to demonstrate that there is no validity to claims that weak, time-varying magnetic fields applied in this manner are eliminated or significantly attenuated (weakened) by the human skull.  The result was straightforward: The fields were not attenuated (weakened) in any way.

Persinger, Michael A., and Kevin S. Saroka. “Minimum Attenuation of Physiologically-Patterned, 1 µTesla Magnetic Fields through Simulated Skull and Cerebral Space.” Journal of Electromagnetic Analysis and Applications 5.04 (2013): 151. (See evidence)

The contention that magnetic fields cannot influence the brain is based on a fallacious interpretation of TMS (Transcranial Magnetic Stimulation), which uses magnetic fields strong enough to depolarize neurons.  Typically, these fields are a million times stronger than the kind that surround stereo headphones.  This “brute force” approach has several clinical applications.  Critics claim that neural stimulation employing fields with lower strengths can’t have any effect.  A brief look at the applicable laws of physics and laboratory evidence shows us that this simply isn’t the case.

It should be understood that any contention that magnetic fields cannot penetrate the head are contrary to the laws of physics, which tell us that the head cannot act as a magnetic insulator, because these same laws exclude the existence of magnetic insulation.  This has to do with one of Maxwell’s Equations (del dot B = 0).  All magnetic field lines must terminate on the opposite pole. Because of this, there is no way to stop all of them; they must all find a way to return the magnetic field lines back to an opposite pole.

This is how it is explained in the theories of physics.  When we examine the question empirically, we find that there is a substantial body of evidence showing that weak magnetic fields do penetrate the head, and that they can also influence brain activity.  Let me address how this happens.

In classical physics, a changing magnetic field produces an electric field and an electric current.  The amount of current depends upon the conductivity of the substance, whether its a copper wire or our brain tissues. That’s how TMS works.  However, there is also magnetic energy.

When we apply our magnetic fields, with strengths a million times less than TMS, the energy within the volume of the person’s brain is about a nanoJoule (one billionth of a Joule) per second.  When we average this out over the about 100 billion neurons (and their support cells) in the human brain, that works out to about 10^-20 Joules per cell each second. The number is a decimal point followed by 19 zeros and then a 1. This may seem very, very small.   Actually, it matches the amount of energy involved when a single nerve cell produces one action potential that contributes to our present-time subjective experience. Moreover, a change in the activity of one neuron can alter the state of the entire brain (Cheng-Yu, 2009) This small quantity of energy is also the same as the amount that binds chemicals to cells through receptors.

However, the values can be enhanced.  Our brains are richly populated with crystalline magnetite, containing 5 million such crystals per gram (Kirschvink, 1992 A).  They appear in chains (“magnetosomes”).  In the vernacular, our fields work because these chained crystals move in response, and because the information encoded in their movement (coming from our signals); their “patterns”, interacts with the magnetic fields that appear as a consequence of the brain’s electrical activity, a “field to field” effect.  Imagine the sun has a storm, making it’s magnetic field pulse slowly.  Here, on the earth, we would have geomagnetic storms, as pulses from the sun’s stormy field are added to that of our planet. We have found the same field that produced the sensed presence works by very specific channels within membranes that allow calcium to enter the cell (Buckner et al, 2015). The timing of the point durations that compose the specific field pattern must be precise or there is no effect.

One of the pioneers in biological aspects of magnetic fields, Joseph Kirshvink (1992 B) wrote:  “A simple calculation shows that magnetosomes [chains of magnetic particles] moving in response to earth-strength ELF fields are capable of opening trans-membrane ion channels, in a fashion similar to those predicted by ionic resonance models. Hence, the presence of trace levels of biogenic [produced or brought about by living organisms] magnetite in virtually all human tissues examined suggests that similar biophysical processes may explain a variety of weak field ELF bioeffects”.

The magnetic fields that surround stereo headphones are in the same range, but are not embedded with neural information.

The reader can see 10 examples of magnetic stimulation studies below.  Only independent studies are listed.  The magnetic stimulation reported in them  run from a quarter of the field strengths used in TMS (1 Tesla) to less than a millionth of that value.  Each listing displays:

  • The unit of magnetic field measurement used in the research publications.
  • The equivalent field strength in milligauss (mG), so that the same unit of measurement can be seen for all the cited studies.
  • The percent of the fields employed in TMS.
  • A brief summary of each result.
  • A link to the publication.

These are displayed below in descending order of field strength, and they range from one quarter (25%)  to five ten-billionths (5 x 10 -13%) of the field strength used in TMS.

Wieraszko (2000) used a 2.5 milliTesla  field (= 25,000 mG, which equals 0.25% of TMS) to exert effects on spikes from hippocampal slices in vitro:

Wieraszko, A. “Dantrolene modulates the influence of steady magnetic fields on hippocampal evoked potentials in vitro.” Bioelectromagnetics 21.3 (2000): 175-182.  (See evidence)

Dobson, Jon, et al. (2000) used a 1.8 milliTesla  field (= 18,000 mG, or  0.18% of the fields strengths used in TMS) to enhanced  and suppress interictal epileptiform activity in temporal lobe epileptics.

Dobson, Jon, et al. “Changes in paroxysmal brainwave patterns of epileptics by weak‐field magnetic stimulation.” Bioelectromagnetics 21.2 (2000): 94-99. (See evidence)

Thomas (et al.), 2007 used a 400 microTesla magnetic field (=4,000 mG which equals 0.04% of the fields used in TMS)  for  pain reduction in patients with fibromyalgia.

Thomas, Alex W., (et al.) “A randomized, double-blind, placebo-controlled clinical trial using a low-frequency magnetic field in the treatment of musculoskeletal chronic pain.” Pain Research & Management: The Journal of the Canadian Pain Society 12.4 (2007): 249. (See evidence)

Huesser, (et al.) 1997 used a 0.1 microTesla magnetic field (= 1000 mG , which equals 0.01% of the fields used in TMS) to cause changes in EEG parameters.

Heusser, Karsten, Dieter Tellschaft, and Franz Thoss. “Influence of an alternating 3 Hz magnetic field with an induction of 0.1 microTesla on chosen parameters of the human occipital EEG.” Neuroscience letters 239.2 (1997): 57-60. (See evidence)

Marino (et al., 2004) used a  1 Gauss magnetic field (= 1000 mG, which equals  0.01% of the fields used in TMS) to cause changes in EEG readings  during presentation of Magnetic fields

Marino, Andrew A., et al. “Effect of low-frequency magnetic fields on brain electrical activity in human subjects.” Clinical Neurophysiology 115.5 (2004): 1195-1201. (See evidence)

Carrubba et al., (2008) used a  2 Gauss magnetic field (= 2000 mG, which equals 0.02% of the field strengths used in TMS) to elicit  magnetosensory evoked potentials.

Carrubba, Simona, et al. “Magnetosensory evoked potentials: consistent nonlinear phenomena.” Neuroscience research 60.1 (2008): 95-105. (See evidence)

Note: The same researcher also found EEG activation in response to magnetic fields with 1 Gauss field strengths (0.01% of the field strengths used in TMS. (See evidence).

Brendel et al., (2000) used an  86 microTesla magnetic field (= 860 mG or  0.0086% of the field strengths used in TMS) to elicit melatonin suppression following in vitro pineal gland exposure to magnetic fields.

Brendel, H., M. Niehaus, and A. Lerchl. “Direct suppressive effects of weak magnetic fields (50 Hz and 162/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus).” Journal of pineal research 29.4 (2000): 228-233. (See evidence)

Bell et al. (2007) used a  0.78 Gauss magnetic field  (=780 mG or 0.0078% of the fields used in TMS) to induce increased EEG activity at two or more frequencies.

Bell, Glenn B., Andrew A. Marino, and Andrew L. Chesson. “Alterations in brain electrical activity caused by magnetic fields: detecting the detection process.”Electroencephalography and clinical Neurophysiology 83.6 (1992): 389-397. (See Evidence)

Vorobyov, et al., (1998) used a  20.9 microTesla magnetic field  (=209 mG or  0.0029% of  the field strengths used in TMS) to influence  EEG differences in rats.

Vorobyov, Vasily Vasilievitch, et al. “Weak combined magnetic field affects basic and morphine-induced rat’s EEG.” Brain research 781.1 (1998): 182-187. (See evidence | See more evidence (2009)).

Tinoco & Ortiz (2014) used a 1 microTesla  magnetic field  (=10 mG  or 0.0001% of the fields strengths used in TMS) to replicate one of Persinger’s published God Helmet effects.

Tinoca, Carlos A., and João PL Ortiz. “Magnetic Stimulation of the Temporal Cortex: A Partial “God Helmet” Replication Study.” Journal of Consciousness Exploration & Research 5.3 (2014).  (See evidence)

Jacobson (1994) used a 5 picoTesla magnetic field (= 0.00005 mG or  0.000000000005% of the field strengths used in TMS), and observed a  direct correlation of melatonin production with magnetic field stimulation.

Jacobson, J. I. “Pineal-hypothalamic tract mediation of picoTesla magnetic fields in the treatment of neurological disorders.” Panminerva medica 36.4 (1994): 201-205.  (See evidence)

Sandyk, (1999) “picoTesla range” used 500 picoTesla (=0.005 milligauss or 0.00000000005% of the field strengths used in TMS) magnetic fields improve olfactory function in Parkinson’s disease.

Sandyk, Reuven. “Treatment with AC pulsed electromagnetic fields improves olfactory function in Parkinson’s disease.” International journal of neuroscience97.3-4 (1999): 225-233.  (See evidence)

NOTE: Sandyk has published scores of case histories documenting the effects of picoTesla range magnetic fields on humans, including MS and Parkinson’s (publications).

I hope this blog will clarify that the magnetic fields we utilize in the God Helmet can indeed affect brain activity, and that claims to the contrary contradict the laws of physics and are made without examination of the evidence.

Dr. Michael A. Persinger
Full Professor
Behavioural Neuroscience, Biomolecular Sciences and Human Studies
Departments of Psychology and Biology
Laurentian University,
Sudbury, Ontario, Canada P3E 2C6
Email: mpersinger@laurentian.ca and drpersinger@neurocog.ca
NOTE: This blog is hosted by a colleague.


Cheng-yu, T. Li, Mu-ming Poo, and Yang Dan. “Burst spiking of a single cortical neuron modifies global brain state.” Science 324.5927 (2009): 643-646.

Kirschivink, Joseph L., Kobayashi-Kisshvink, Atsuko & Woodford, Barbera J. “Magnetite biomineralization in the Human Brain”, Proceedings of the National Academy of Science 1992 (A), 89 7683-7687

Kirschvink, Joseph L., et al. “Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields.” Bioelectromagnetics 13.S1 1992 (B): 101-113.

Buckner CA, Buckner AL, Koren SA, Persinger MA, Lafrenie RM (2015) Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels. PLoS ONE 10(4): e0124136. doi:10.1371/journal.pone.0124136