25 Articles On Neurotheology

There are about 25 articles on neurotheology on a recently-reorganized page on my website.  Most authors on this subject take monotheism (God and belief in God) as the main subject for neurotheology.  I think that the mystic traditions of Hinduism and Buddhism are just as important, and there are several articles that cover some of it’s concepts, including enlightenment and reincarnation.

Here’s the link:
https://www.god-helmet.com/wp/neurotheology.htm

My perspective is based on neuroscience, but the theory of evolution is just as important for me.  It’s not enough to see that the brain participates in spiritual experiences.  Any explanations that fail to see the adaptive value of spirituality in our evolutionary history fall short of explaining why humans are so often deeply involved with religion, and why some of us aren’t.  That’s an important part of the story.  The brain can take us through mystic experiences, but neurotheology needs to explain why, and that brings us back to the origins of our species.

The religions we see today aren’t the ones neurotheology really needs to explain.  The religions of our earliest ancestors may be the best place to look to understand how and why humans are so drawn to religion and spiritual practices, like prayer, chanting, meditation and above all, shamanism.

My article on that subject is here:
https://www.god-helmet.com/wp/religious_mystic_in_evolution.htm

The published version (published in a scientific journal, and more difficult reading) is here:
https://www.scribd.com/document/103366639/The-Role-of-Religious-and-Mystic-Experiences-in-Human-Evolution

Among other things, it says that two brain parts are the source for spiritual experiences.  These are the hippocampus on the right, and the amygdala on the left.  The hippocampus supports trances, meditation, introspection, equanimity and detachment.  The left amygdala underpins devotion, intimations of God, angels and spirits, as well as religious joy, rapture, and bliss.  We could say that the first is the way of meditation, and the second is the way of prayer.

Differences in personality and ways of thinking (“cognitive style”) that appear when people have their spirituality ‘focused’ in these two very different brain structures create diversity among people. It also means that no single “spiritual path” could (or ever can) work for everyone.

This gave our earliest ancestors many different ways of thinking.   People with many different perspectives participated in our ancient tribal councils.  In a tribal council, the aggressive and the peaceful both have voices worth hearing.  This gave the tribe more options when they were confronted with threats and opportunities.

There were (and still are) big differences in the religious lives of people.  On top of this, there are big differences in how ‘spiritual’ we are.  Some of us are so involved with religion that anything they say is an expression of their religious beliefs.  Others don’t care at all.  Our populations include both atheists and the devout, as part of the same (evolutionary) strategy for keeping ourselves alive.  Atheists are often ‘linear thinkers’, and religious people are more ‘holistic’.  Each type is prone to different mistakes, and when our species was young, they could compensate for each other.

The variety in the kinds of spirituality, and the differences in how interested we are in it, may be the sources for the diversity among humans.  And diversity is part of our ‘survival strategy’.  Ten people, ancient or modern, will find ten different things to say about a single situation, and this gave our ancient tribes lots of options for responding to it.  The tribe would make it’s choice over time, after people had had a chance to talk it over.  The saying “many hands make light work” applied to thinking as well as working.

Spirituality may be supported by our brains, but only because our evolution demanded it.

The variety in how much and what kind of religion may be one of the things that makes us human.

Homo Sapiens:  The animal that both prays, and rejects prayer.

Advertisements
Posted in neurotheology | Leave a comment

Out of Body Experience in less than six minutes with advanced magnetic stimulation

“Dr. Michael Persinger, known as the developer of the God Helmet, an experimental apparatus that let a few people see God in his laboratory, has published a laboratory report in which a subject had an out-of-body experience immediately after magnetic brain stimulation that lasted only five minutes.”  Link (opens in a new window)

This is a fascinating read for anyone interested in OBEs.

Posted in Uncategorized | Leave a comment

Reply to “Neuroscience for the Soul”.

Shiva_God_HelmetPersinger has published a reply to a critical article in a British “pop” psychology magazine (The Psychologist) entitled “Neuroscience for the Soul”.  This article perpetuates a few mistaken notions about the God Helmet, as well as some of Persinger’s theories.

For example, Persinger does not believe that spiritual and religious experiences are seizural events in the temporal lobes, and he also rejects the idea that religious belief is an epileptic phenomena.

Persinger’s God Helmet results are not due to suggestion, and they do use placebo controls and double-blind conditions.

Richard Dawkins, the flagship author and semi-official spokesman for the skeptical movement, had been drinking before his God Helmet Session, and that’s why he felt so few effects.

The low-intensity magnetic fields used with the God Helmet are strong enough to create striking effects, and this link will take you to a page where you can see that lots of other researchers have seen measurable effects using low-powered magnetic fields on the brain.

Skeptics insist that Persinger’s work with paranormal phenomena (correlating it with geomagnetic measures) has not been replicated.  However, it simply isn’t true.

In spite of claims to the contrary, there has been a replication of a God Helmet experiment, (easy reading description) as well as replication of other work by M.A. Persinger.

The “Haunted Room” experiment (intended to try to create a synthetic haunted environment) was not a test of any of Persinger’s concepts, in spite of claims to the contrary.  The “haunted room” experiment used whole-body stimulation (to try to create an artificial “haunted Room”), while Persinger’s experiments stimulated only the head, and sometimes just one side of it.  You can’t stimulate only the right side of the head using an entire room as the stimulator.

Most of the criticisms of Persinger’s theories and ideas resolve into “straw man” arguments.  These are arguments that give the impression of criticizing a person’s argument, while actually challenging a position that they never advanced.  It creates the illusion of having falsified an opponent’s proposition by covertly replacing it with a different proposition (i.e. “stand up a straw man”) and then to dispute the false argument (“knock down a straw man”) instead of the original proposition.  Other straw man arguments are based on substituting a critic’s interpretation of a belief for the belief itself.

There are many other points discussed in Persinger’s published reply, making it worth reading for anyone interested in neurotheology and the many debates that have appeared over the years.  You can read it here.

Posted in God Helmet | Tagged , , , , , | 2 Comments

Ten Blogs by Dr. Michael A. Persinger

Blogs by Dr. Michael A. Persinger.

The God Helmet’s Weak Fields are Sufficient to Influence Brain Activity.

We do not allow suggestion or Suggestibility to Influence our Lab Results.

Our results can’t be attributed to suggestion.

God Helmet (and many other of our) results have been replicated.

God Helmet Experiments use Blind Protocols and Placebo Controls.

Replications of our work on Geomagnetism and Paranormal Phenomena.

The Tectonic Strain Theory and French’s “Haunted Room” Experiment.

Richard Dawkins – Alcohol and the God Helmet don’t mix.

My theories are not based on religiousness in epileptics.

Religious belief is not an epileptic phenomenon.

Shortlink to this page:

http://wp.me/p2FgAb-bo

Posted in Dr. Michael Persinger's blog | Tagged , , , , , , , , , , , , , | 1 Comment

The God Helmet’s Weak Fields are Sufficient to Influence Brain Activity – A Blog By Dr. M. A. Persinger

The mistaken claims that our magnetic fields can’t affect the brain ignore the evidence – a Blog by Dr. Michael Persinger.

Question: Is there any truth to the claim that your magnetic fields cannot influence the brain?

A schematic diagram of the testing apparatus for the experiment. Two wooden pine boards or duct metal were periodically inserted between the SAM-360 device and the power meter. In one condition physiological saline was placed adjacent to the power meter.

A schematic diagram of the testing apparatus for the experiment. Two wooden pine boards or duct metal were periodically inserted between the SAM-360 (vis. God Helmet) device and the power meter. In one condition physiological saline was placed adjacent to the power meter.

Answer: No.  Recently, a colleague and I performed an experiment using three materials, each three times as dense and thick as the human skull (wood, saline solution or duct metal) to demonstrate that there is no validity to claims that weak, time-varying magnetic fields applied in this manner are eliminated or significantly attenuated (weakened) by the human skull.  The result was straightforward: The fields were not attenuated (weakened) in any way.

Persinger, Michael A., and Kevin S. Saroka. “Minimum Attenuation of Physiologically-Patterned, 1 µTesla Magnetic Fields through Simulated Skull and Cerebral Space.” Journal of Electromagnetic Analysis and Applications 5.04 (2013): 151. (See evidence)

The contention that magnetic fields cannot influence the brain is based on a fallacious interpretation of TMS (Transcranial Magnetic Stimulation), which uses magnetic fields strong enough to depolarize neurons.  Typically, these fields are a million times stronger than the kind that surround stereo headphones.  This “brute force” approach has several clinical applications.  Critics claim that neural stimulation employing fields with lower strengths can’t have any effect.  A brief look at the applicable laws of physics and laboratory evidence shows us that this simply isn’t the case.

It should be understood that any contention that magnetic fields cannot penetrate the head are contrary to the laws of physics, which tell us that the head cannot act as a magnetic insulator, because these same laws exclude the existence of magnetic insulation.  This has to do with one of Maxwell’s Equations (del dot B = 0).  All magnetic field lines must terminate on the opposite pole. Because of this, there is no way to stop all of them; they must all find a way to return the magnetic field lines back to an opposite pole.

This is how it is explained in the theories of physics.  When we examine the question empirically, we find that there is a substantial body of evidence showing that weak magnetic fields do penetrate the head, and that they can also influence brain activity.  Let me address how this happens.

In classical physics, a changing magnetic field produces an electric field and an electric current.  The amount of current depends upon the conductivity of the substance, whether its a copper wire or our brain tissues. That’s how TMS works.  However, there is also magnetic energy.

When we apply our magnetic fields, with strengths a million times less than TMS, the energy within the volume of the person’s brain is about a nanoJoule (one billionth of a Joule) per second.  When we average this out over the about 100 billion neurons (and their support cells) in the human brain, that works out to about 10^-20 Joules per cell each second. The number is a decimal point followed by 19 zeros and then a 1. This may seem very, very small.   Actually, it matches the amount of energy involved when a single nerve cell produces one action potential that contributes to our present-time subjective experience. Moreover, a change in the activity of one neuron can alter the state of the entire brain (Cheng-Yu, 2009) This small quantity of energy is also the same as the amount that binds chemicals to cells through receptors.

However, the values can be enhanced.  Our brains are richly populated with crystalline magnetite, containing 5 million such crystals per gram (Kirschvink, 1992 A).  They appear in chains (“magnetosomes”).  In the vernacular, our fields work because these chained crystals move in response, and because the information encoded in their movement (coming from our signals); their “patterns”, interacts with the magnetic fields that appear as a consequence of the brain’s electrical activity, a “field to field” effect.  Imagine the sun has a storm, making it’s magnetic field pulse slowly.  Here, on the earth, we would have geomagnetic storms, as pulses from the sun’s stormy field are added to that of our planet. We have found the same field that produced the sensed presence works by very specific channels within membranes that allow calcium to enter the cell (Buckner et al, 2015). The timing of the point durations that compose the specific field pattern must be precise or there is no effect.

One of the pioneers in biological aspects of magnetic fields, Joseph Kirshvink (1992 B) wrote:  “A simple calculation shows that magnetosomes [chains of magnetic particles] moving in response to earth-strength ELF fields are capable of opening trans-membrane ion channels, in a fashion similar to those predicted by ionic resonance models. Hence, the presence of trace levels of biogenic [produced or brought about by living organisms] magnetite in virtually all human tissues examined suggests that similar biophysical processes may explain a variety of weak field ELF bioeffects”.

The magnetic fields that surround stereo headphones are in the same range, but are not embedded with neural information.

The reader can see 10 examples of magnetic stimulation studies below.  Only independent studies are listed.  The magnetic stimulation reported in them  run from a quarter of the field strengths used in TMS (1 Tesla) to less than a millionth of that value.  Each listing displays:

  • The unit of magnetic field measurement used in the research publications.
  • The equivalent field strength in milligauss (mG), so that the same unit of measurement can be seen for all the cited studies.
  • The percent of the fields employed in TMS.
  • A brief summary of each result.
  • A link to the publication.

These are displayed below in descending order of field strength, and they range from one quarter (25%)  to five ten-billionths (5 x 10 -13%) of the field strength used in TMS.


Wieraszko (2000) used a 2.5 milliTesla  field (= 25,000 mG, which equals 0.25% of TMS) to exert effects on spikes from hippocampal slices in vitro:

Wieraszko, A. “Dantrolene modulates the influence of steady magnetic fields on hippocampal evoked potentials in vitro.” Bioelectromagnetics 21.3 (2000): 175-182.  (See evidence)


Dobson, Jon, et al. (2000) used a 1.8 milliTesla  field (= 18,000 mG, or  0.18% of the fields strengths used in TMS) to enhanced  and suppress interictal epileptiform activity in temporal lobe epileptics.

Dobson, Jon, et al. “Changes in paroxysmal brainwave patterns of epileptics by weak‐field magnetic stimulation.” Bioelectromagnetics 21.2 (2000): 94-99. (See evidence)


Thomas (et al.), 2007 used a 400 microTesla magnetic field (=4,000 mG which equals 0.04% of the fields used in TMS)  for  pain reduction in patients with fibromyalgia.

Thomas, Alex W., (et al.) “A randomized, double-blind, placebo-controlled clinical trial using a low-frequency magnetic field in the treatment of musculoskeletal chronic pain.” Pain Research & Management: The Journal of the Canadian Pain Society 12.4 (2007): 249. (See evidence)


Huesser, (et al.) 1997 used a 0.1 microTesla magnetic field (= 1000 mG , which equals 0.01% of the fields used in TMS) to cause changes in EEG parameters.

Heusser, Karsten, Dieter Tellschaft, and Franz Thoss. “Influence of an alternating 3 Hz magnetic field with an induction of 0.1 microTesla on chosen parameters of the human occipital EEG.” Neuroscience letters 239.2 (1997): 57-60. (See evidence)


Marino (et al., 2004) used a  1 Gauss magnetic field (= 1000 mG, which equals  0.01% of the fields used in TMS) to cause changes in EEG readings  during presentation of Magnetic fields

Marino, Andrew A., et al. “Effect of low-frequency magnetic fields on brain electrical activity in human subjects.” Clinical Neurophysiology 115.5 (2004): 1195-1201. (See evidence)


Carrubba et al., (2008) used a  2 Gauss magnetic field (= 2000 mG, which equals 0.02% of the field strengths used in TMS) to elicit  magnetosensory evoked potentials.

Carrubba, Simona, et al. “Magnetosensory evoked potentials: consistent nonlinear phenomena.” Neuroscience research 60.1 (2008): 95-105. (See evidence)

Note: The same researcher also found EEG activation in response to magnetic fields with 1 Gauss field strengths (0.01% of the field strengths used in TMS. (See evidence).


Brendel et al., (2000) used an  86 microTesla magnetic field (= 860 mG or  0.0086% of the field strengths used in TMS) to elicit melatonin suppression following in vitro pineal gland exposure to magnetic fields.

Brendel, H., M. Niehaus, and A. Lerchl. “Direct suppressive effects of weak magnetic fields (50 Hz and 162/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus).” Journal of pineal research 29.4 (2000): 228-233. (See evidence)


Bell et al. (2007) used a  0.78 Gauss magnetic field  (=780 mG or 0.0078% of the fields used in TMS) to induce increased EEG activity at two or more frequencies.

Bell, Glenn B., Andrew A. Marino, and Andrew L. Chesson. “Alterations in brain electrical activity caused by magnetic fields: detecting the detection process.”Electroencephalography and clinical Neurophysiology 83.6 (1992): 389-397. (See Evidence)


Vorobyov, et al., (1998) used a  20.9 microTesla magnetic field  (=209 mG or  0.0029% of  the field strengths used in TMS) to influence  EEG differences in rats.

Vorobyov, Vasily Vasilievitch, et al. “Weak combined magnetic field affects basic and morphine-induced rat’s EEG.” Brain research 781.1 (1998): 182-187. (See evidence | See more evidence (2009)).


Tinoco & Ortiz (2014) used a 1 microTesla  magnetic field  (=10 mG  or 0.0001% of the fields strengths used in TMS) to replicate one of Persinger’s published God Helmet effects.

Tinoca, Carlos A., and João PL Ortiz. “Magnetic Stimulation of the Temporal Cortex: A Partial “God Helmet” Replication Study.” Journal of Consciousness Exploration & Research 5.3 (2014).  (See evidence)


Jacobson (1994) used a 5 picoTesla magnetic field (= 0.00005 mG or  0.000000000005% of the field strengths used in TMS), and observed a  direct correlation of melatonin production with magnetic field stimulation.

Jacobson, J. I. “Pineal-hypothalamic tract mediation of picoTesla magnetic fields in the treatment of neurological disorders.” Panminerva medica 36.4 (1994): 201-205.  (See evidence)


Sandyk, (1999) “picoTesla range” used 500 picoTesla (=0.005 milligauss or 0.00000000005% of the field strengths used in TMS) magnetic fields improve olfactory function in Parkinson’s disease.

Sandyk, Reuven. “Treatment with AC pulsed electromagnetic fields improves olfactory function in Parkinson’s disease.” International journal of neuroscience97.3-4 (1999): 225-233.  (See evidence)

NOTE: Sandyk has published scores of case histories documenting the effects of picoTesla range magnetic fields on humans, including MS and Parkinson’s (publications).

I hope this blog will clarify that the magnetic fields we utilize in the God Helmet can indeed affect brain activity, and that claims to the contrary contradict the laws of physics and are made without examination of the evidence.

Dr. Michael A. Persinger
Full Professor
Behavioural Neuroscience, Biomolecular Sciences and Human Studies
Departments of Psychology and Biology
Laurentian University,
Sudbury, Ontario, Canada P3E 2C6
Email: mpersinger@laurentian.ca and drpersinger@neurocog.ca
NOTE: This blog is hosted by a colleague.

REFERENCES

Cheng-yu, T. Li, Mu-ming Poo, and Yang Dan. “Burst spiking of a single cortical neuron modifies global brain state.” Science 324.5927 (2009): 643-646.

Kirschivink, Joseph L., Kobayashi-Kisshvink, Atsuko & Woodford, Barbera J. “Magnetite biomineralization in the Human Brain”, Proceedings of the National Academy of Science 1992 (A), 89 7683-7687

Kirschvink, Joseph L., et al. “Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields.” Bioelectromagnetics 13.S1 1992 (B): 101-113.

Buckner CA, Buckner AL, Koren SA, Persinger MA, Lafrenie RM (2015) Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels. PLoS ONE 10(4): e0124136. doi:10.1371/journal.pone.0124136

Posted in Dr. Michael Persinger's blog | Tagged , , , , , | 1 Comment

We Do Not Allow Suggestion or Suggestibility to Influence our Lab Results. – A Blog by Dr. M.A. Persinger

We take every measure to ensure that our subjects are not exposed to suggestions.

We take every measure to ensure that our subjects are not exposed to suggestions.

Our laboratory results are not due to suggestion or suggestibility – A blog by Dr. Michael A. Persinger.

We apply several procedures to guarantee that our subjects are not exposed to suggestions, have no expectations, so that our results are not influenced by subject suggestibility.

These procedures and analytical methods rule out suggestion as an explanation for the effects we have observed in our experiments.

Question: How do you ensure that subjects are not inadvertently given suggestions as to the purpose of your experiments and how do you respond to the claim that your results are due to suggestibility?

Human beings are remarkably sensitive to subtle cues in their environment. For example, specific areas of the human brain respond to alterations in structures of sentences while a person is reading even though the person is not “aware” of the change in sentence structure (Bern, 1997).

Thirty years ago when we were interested in the “subjective narrative” of people sitting in the dark in a quiet chamber we found that the music, e.g., a Gregorian chant or the bars from the movie Close Encounters of the Third Kind, compared to sitting in silence, affected the content of the “spontaneous” themes.  Sitting in silent darkness without previously hearing any music generated more “death” images, the pre-darkness listening to Gregorian chants was associated with more religious images and the movie score was associated with space themes.  We could influence what the subjects thought about by “priming” them with music with clear connotations.

Context is also important (Persinger, 1989; 1992). In one of our placebo-controlled experiments, we applied our magnetic signals, and immediately afterwards, the subjects listened to an ambiguous narrative (story) about a young boy who had night time anomalous experiences (“The Billy Story”) .  These were epileptic in origin, although this was never stated.  After the story and the stimulation was complete, we asked to subjects to listen to a brief story about either alien abduction or early sexual abuse.  The story was provided without any explanation.  The subjects were then asked to interpret the story about the boy’s night time experiences both immediately and a few days after.  We found that the subjects who heard the story about early sexual abuse interpreted the “Billy” story as one of sexual abuse, and the subjects who heard the story about alien abductions interpreted it as being about an interaction with aliens.   (Dittburner and Persinger, 1993; O’Gorman and Persinger, 1998). In this way, we verified how easily pseudomemories or false memories can be produced (Persinger, 1992; Healey and Persinger, 2001).

My critics who attribute God Helmet experiences to suggestibility have never directly tested this hypothesis. We have tested this potential confounding effect by psychometric inferences which are highly correlated with hypnotizability, such as the Wilson-Barber Imaginings Scale. We also have several experiments where we measured hypnotizibility directly with the Spiegel and Spiegel scale where the experimenter interacts with the subject directly (Ross and Persinger, 1987). The latter was administered after the exit questionnaire containing 20 questions about their experiences.

Interestingly, the last item in this questionnaire asks if the red light changed intensity even though for most studies there was no red light. Suggestible or highly hypnotizable individuals frequently respond “yes” to this item. However, even when the many suggestibility measures were taken into account during the statistical analyses, the sensed presence reports still occurred primarily when the “God Experience” protocol was used.

Dr. Linda St-Pierre and I explained this in our 2006 paper in the International Journal of Neuroscience, but online skeptics seem not to have read it.   Finally I reiterate that the volunteers do not know if they will receive a magnetic field or which field it might be and they are always told they are participating in a relaxation study.

We use questionnaires with our student subjects.  The questionnaires are applied at least six weeks before these students participate, and these are only some of the questionnaires they students fill out as they study psychological data gathering.  This gives them first hand experience with methods of gathering psychological data.  They have no idea that the questions have anything to do with the experiment.  The data are gathered under “blind” conditions.

We do not decorate our lab with any spiritual or religious imagery, and the researchers don’t discuss the specifics of the experiment with subjects until after all data have been gathered.

One experiment made it clear that our effects were not coming from suggestion.  After experimenting for several years with a burst-firing pattern, and seeing repeated results telling us that it generated higher pleasantness ratings when applied over the left hemisphere (see example; Persinger & Healey, 2002), we began to investigate another signal, derived from hippocampal tissues during long-term potentiation.  In that case, and a few since, we have seen that this signal is more pleasant over the right hemisphere (Persinger, et al., 1994).  If our effects were due to suggestion, these results should have been the same in all cases, but they weren’t.

I hope this blog clarifies that we are aware of experimental factors that allow suggestions and suggestibility to confound experimental results, and that we take all necessary steps to prevent their occurrence.

Dr. Michael A. Persinger
Full Professor
Behavioural Neuroscience, Biomolecular Sciences and Human Studies
Departments of Psychology and Biology
Laurentian University,
Sudbury, Ontario, Canada P3E 2C6
Email: mpersinger@laurentian.ca and drpersinger@neurocog.ca
NOTE: This blog is hosted by a colleague.

 


 

REFERENCES:

Berns, Gregory S., Jonathan D. Cohen, and Mark A. Mintun. “Brain regions responsive to novelty in the absence of awareness.” Science 276.5316 (1997): 1272-1275.

Dittburner, T.-L. and Persinger, M. A. (1993). Intensity of amnesia during hypnosis is positively correlated with estimated prevalence of sexual abuse and alien abductions: implications for false memory syndrome. Perceptual and Motor Skills, 77, 895-898.

Healey, F. and Persinger, M. A. (2001). Experimental production of illusory (false) memories in reconstructions of narratives: effect size and potential mediation by right hemispheric stimulation from complex, weak magnetic fields. International Journal of Neuroscience, 106, 195-207.

O’Gorman, K. A. and Persinger, M. A. (1998). Hypnotic Induction profiles, contextual innuendo and delayed intrusion errors for a narrative: searching for mediating variables. Perceptual and Motor Skills, 87, 587-593.

Persinger, M. A. (1989). Geophysical variables and behavior: LV. Predicting the details of visitor experiences and the personality of experients. Perceptual and Motor Skills, 68, 55-65.

Persinger, M. A. (1992). Neuropsychological profiles of adults who report “suddenly remembering” of early childhood memories: implications for claims of sexual abuse and alien visitations/abduction experiences. Perceptual and Motor Skills, 75, 259-266.

Persinger, M. A. (1996). Subjective pseudocyesis in normal woman who exhibit enhanced imaginings and elevated indicators of electrical lability within the temporal lobes: implications for the “Missing Embryo Syndrome”. Social Behavior and Personality, 24, 101-112.

Ross, J. and Persinger, M. A. (1987). Positive correlations between temporal lobe signs and hypnosis induction profiles: a replication. Perceptual and Motor Skills, 64, 828-830.

St-Pierre, L. S. and Persinger, M. A. (2006). Experimental facilitation of the sensed presence is predicted by specific patterns of applied magnetic fields not suggestibility: re-analysis of 19 experiments. International Journal of Neuroscience, 116, 1-8.

Spiegel, H. and Spiegel, D. (1978). Trance and treatment: clinical uses of hypnosis. New York: Basic Books.

Persinger, Michael A., and Faye Healey. “Experimental facilitation of the sensed presence: Possible intercalation between the hemispheres induced by complex magnetic fields.” The Journal of nervous and mental disease 190.8 (2002): 533-541.

Persinger, Michael A., Pauline M. Richards, and Stanley A. Koren. “Differential ratings of pleasantness following right and left hemispheric application of low energy magnetic fields that stimulate long-term potentiation.” International journal of neuroscience 79.3-4 (1994): 191-197.

Posted in Dr. Michael Persinger's blog | Tagged , , , | Leave a comment

Our results can’t be attributed to suggestion. – A blog By Dr. Michael Persinger

Shiva_God_Helmet

The results of our experiments cannot be attributed to experimenter suggestion or subject suggestibility. – A Blog by Dr. Michael Persinger.

Question: What results have you had that cannot be explained by suggestion?

Answer: We have seen many effects that cannot be explained by suggestion or suggestibility.  These have been done with people, rats, worms and living cells maintained (cultured) in petri dishes.

One very clear illustration is seen in our study that found that our magnetic field stimulation actually enhanced hypnotizability (Tiller, 1994) with a pulsed field, which we replicated two years later (Healey, 1996) with a burst-firing pattern.    We took measures of the suggestibility of each subject using an established instrument for its measurement as part of these experiments (Spiegel, 1978).  Altering suggestibility through suggestion is a highly improbable scenario, so the results of these studies ruled it out as an explanation for our magnetic stimulation effects in humans approximately twenty years ago.

For many of our experiments that created the sensed presence, we measured suggestibility directly using a well-established protocol (Spiegel, 1978).  We found that analyzing the data for the person’s hypnotizability score did not reduce the intensity of the sensed presence produced by the specific magnetic field pattern. The key paper was called “Experimental facilitation of the sensed presence is predicted by specific patterns of applied magnetic fields not by suggestibility: re-analysis of 19 experiments”. It was published in the International Journal of Neuroscience (St-Pierre, LS, 2006).

We have observed clinical effects that cannot be explained by suggestion. For example, Baker-Price (1996) found differential changes in the EEG patterns of patients who had sustained head injuries, depending upon the specific neural location where the field was applied.  The experiment also found a significant improvement of depression and a reduction of phobias.  We replicated this experiment in 2003 (Baker-Price, 2003), with very similar results and follow-up six weeks after the experiment was completed.  Tsang et al (2009) showed clearly with relatively crude psychometric measurements that infer emotional profiles that different patterned fields produced different mood states. Attributing these results to patient suggestibility leads inevitably to the conclusion that  depression can be treated through suggestion, a conclusion unsupported by any evidence nor predicted by any hypotheses.

We have also shown clear changes in delta and theta power over the temporal lobes during magnetic field stimulation (and more accurate brain wave measures, such as QEEG),  (Corradini et al  2013), using a completely separate method for producing the signals.  Eliciting the same effects with both different hardware and software also allows confirmation that our results that cannot be attributed to hardware artifacts.

However, the most powerful demonstration that the electromagnetic effects are not due to suggestion is the effect upon cells. We have found in controlled studies that the same pattern using in our sensed presence experiments slows the rate of a variety of different types of cancer cells in cultures (Hu, et al., 2010, Bruckner, 2015). These fields inhibited only cancer cell growth but did not retard the growth of normal cells.  We have found this same field that produced the sensed presence works by very specific channels within membranes that allow calcium to enter the cell (Buckner et al, 2015). The timing of the point durations that compose the specific field pattern must be precise or there is no effect.

Our studies using lab rats cannot be attributed to suggestion as rats cannot be said to be “suggestible”.

Nevertheless, we carry out blind analysis of rat brain sections in our rat studies, in which the investigator does not know which brain regions may have been affected by a procedure or the magnitude of the differences predicted between the rat brains exposed to the magnetic fields and those which were not (Fournier, 2012). In rat studies investigating differences in rat behavior following stimulation with magnetic signals, the experimenter observing their behavior is kept blind to the experimental condition (Whissell, 2007, McKay, 2004, Bureau, 1994, Babik, 1992).  Our examination of microscope slides from rat subjects and controls is also done under blind conditions (Cook, 1999). We have also carried out similar procedures with worms (planarium – Dugesia sp.) (Mulligan, 2012).

The false impression that our effects come from suggestibility of our experimental participants originates from  a paper published by Granqvist et al..  That publication reported an incorrectly configured experiment in which our neural stimulation signals were run at too high a velocity (their computer wasn’t calibrated to the software) and for too short a time (only ten minutes instead of the twenty we normally use as the minimum stimulation).   There were other issues, but these were the most significant.  Granqvist et al explained the difference between our results and theirs by the speculation that our results were due to suggestibility in our subjects. Note that Granqvist et al did not actually measure their subject’s suggestibility.   Their explanation is entirely speculative and ultimately incorrect.

I hope this blog will clarify that we are fully aware of the need to prevent experimenter suggestions and that our results are not due to to suggestibility in our subjects.

Dr. Michael A. Persinger
Full Professor
Behavioural Neuroscience, Biomolecular Sciences and Human Studies
Departments of Psychology and Biology
Laurentian University,
Sudbury, Ontario, Canada P3E 2C6
Email: mpersinger@laurentian.ca and drpersinger@neurocog.ca
NOTE: This blog is hosted by a colleague.

 


REFERENCES

Tiller, S. G., and Michael A. Persinger. “Enhanced hypnotizability by cerebrally applied magnetic fields depends upon the order of hemispheric presentation: An anistropic effect.” International journal of neuroscience 79.3-4 (1994): 157-163.

Healey, Faye, Michael A. Persinger, and S. A. Koren. “Enhanced hypnotic suggestibility following application of burst-firing magnetic fields over the right temporoparietal lobes: A replication.” International journal of neuroscience 87.3-4 (1996): 201-207.

Spiegel, H. & Spiegel, D. (1978) Trance and treatment. Basic Books: N.Y.

Pierre, LS St, and M. A. Persinger. “Experimental facilitation of the sensed presence is predicted by the specific patterns of the applied magnetic fields, not by suggestibility: re-analyses of 19 experiments.” International Journal of Neuroscience 116.19 (2006): 1079-1096.

Baker-Price, L. A., and Michael A. Persinger. “Weak, but complex pulsed magnetic fields may reduce depression following traumatic brain injury.”  Perceptual and motor skills 83.2 (1996): 491-498.

Baker-Price, Laura, and Michael A. Persinger. “Intermittent burst-firing weak (1 microTesla) magnetic fields reduce psychometric depression in patients who sustained closed head injuries: A replication and electroencephalographic validation.” Perceptual and motor skills 96.3 (2003): 965-974.

Tsang, Eric W., Stanley A. Koren, and Michael A. Persinger. “Specific patterns of weak (1 microTesla) transcerebral complex magnetic fields differentially affect depression, fatigue, and confusion in normal volunteers.” Electromagnetic biology and medicine 28.4 (2009): 365-373.

Corradini, Paula L.; Mark W. G. Collins; Dr. Michael A. Persinger  “Facilitation of Declarative Memory and Congruent Brain States by Applications of Weak, Patterned Magnetic Fields: The Future of Memory Access?”  International Journal of Humanities and Social Science Vol. 4, No. 13; November 2014

Hu, Jing H., et al. “Growth of injected melanoma cells is suppressed by whole body exposure to specific spatial-temporal configurations of weak intensity magnetic fields.” International journal of radiation biology 86.2 (2010): 79-88.

Buckner CA, Buckner AL, Koren SA, Persinger MA, Lafrenie RM (2015) Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels. PLoS ONE 10(4): e0124136. doi:10.1371/journal.pone.0124136

Whissell, P.D. , Persinger, M.A.; “Developmental effects of perinatal exposure to extremely weak 7 Hz magnetic fields and nitric oxide modulation in the Wistar albino rat ” International Journal of Developmental Neuroscience 25 (2007) 433–439

McKay, B. E., and M. A. Persinger. “Normal spatial and contextual learning for ketamine-treated rats in the pilocarpine epilepsy model.” Pharmacology Biochemistry and Behavior 78.1 (2004): 111-119.

Bureau, Y. R. J., O. Peredery, and M. A. Persinger. “Concordance of quantitative damage within the diencephalon and telencephalon following systemic pilocarpine (380 mg/kg) or lithium (3 mEq/kg)/pilocarpine (30 mg/kg) induced seizures.” Brain Research 648.2 (1994): 265-269.

Missaghi, Babik, Pauline M. Richards, and Michael A. Persinger. “Severity of experimental allergic encephalomyelitis in rats depends upon the temporal contiguity between limbic seizures and inoculation.” Pharmacology Biochemistry and Behavior 43.4 (1992): 1081-1086.

Cook, Lisa L., and M. A. Persinger. “Infiltration of lymphocytes in the limbic brain following stimulation of subclinical cellular immunity and low dosages of lithium and a cholinergic agent.” Toxicology letters 109.1 (1999): 77-85.

Mulligan, Bryce P. , Noa Gang, Glenn H. Parker, Michael A. Persinger  “Magnetic Field Intensity/Melatonin-Molarity Interactions: Experimental Support with Planarian (Dugesia sp.) Activity for a Resonance-Like Process” Open Journal of Biophysics, 2012, 2, 137-143

Posted in Dr. Michael Persinger's blog | Tagged , , , , | 1 Comment